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ABSTRACT
Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from
sequential data. However, fitting them to large datasets can be computationally demanding because most
likelihood maximization techniques require iterating through the entire underlying dataset for every param-
eter update. We propose a novel optimization algorithm that updates the parameters of an HMM without
iterating through the entire dataset. Namely, we combine a partial E step with variance-reduced stochastic
optimization within the M step. We prove the algorithm converges under certain regularity conditions. We
test our algorithm empirically using a simulation study as well as a case study of kinematic data collected
using suction-cup attached biologgers from eight northern resident killer whales (Orcinus orca) off the
western coast of Canada. In both, our algorithm converges in fewer epochs, with less computation time, and
to regions of higher likelihood compared to standard numerical optimization techniques. Our algorithm
allows practitioners to fit complicated HMMs to large time-series datasets more efficiently than existing
baselines. Supplemental materials are available online.
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1. Introduction

Hidden Markov models (HMMs) are statistical models for
sequential data that are widely used to model time series in fields
such as speech recognition (Gales and Young 2007), geology
(Bebbington 2007), neuroscience (Kottaram et al. 2019), finance
(Mamon and Elliott 2007), and ecology (McClintock et al. 2020).
Such models are often used to predict a latent process of interest
(e.g., a spoken phrase or an animal’s behavioral state) from
an observed time series (e.g., raw audio or time-depth data).
Many practitioners estimate the parameters of an HMM by
maximizing the likelihood function using either gradient-based
numerical maximization or the expectation-maximization (EM)
algorithm (Baum et al. 1970; Dempster, Laird, and Rubin 1977).

One serious concern for both numerical maximization and
the EM algorithm is that every parameter update requires iter-
ating though the full set of observations to calculate either the
likelihood or its gradient. This concern is likely to only worsen
in the future, as time-series datasets are increasingly collected
at high frequencies and contain large numbers of observations
(Patterson et al. 2017; Li, Han, and Song 2020). These datasets
require progressively complex HMMs which can be computa-
tionally expensive to fit (Adam et al. 2019; Sidrow et al. 2022).
In addition, many model validation techniques such as cross-
validation require repeated parameter estimation which can be
prohibitive even for relatively simple HMMs (Pohle et al. 2017).
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Many inference techniques for independent datasets do not
require iterating through the entire dataset to update a model’s
parameters. We henceforth refer to these techniques as sub-
linear methods. One example of a sub-linear method is stochas-
tic gradient descent (SGD), which estimates the gradient of
the full likelihood using a random subset of the data (Robbins
and Monro 1951). It is ubiquitous in the optimization literature
and has inspired several extensions. For example, Johnson and
Zhang (2013), Defazio, Bach, and Lacoste-Julien (2014) and
Kingma and Ba (2015) reduce the variance of the gradient esti-
mates compared to standard SGD, while Zinkevich et al. (2010)
incorporate parallelization into SGD. Similarly, the incremental
EM algorithm is a generalization of the EM algorithm that
updates only a subset of hidden variables at each E step (Neal
and Hinton 1998; Thiesson, Meek, and Heckerman 2001; Karimi
et al. 2019). Both stochastic gradient descent and incremental
EM assume that the underlying dataset is comprised of inde-
pendent subsets. Such an assumption is sometimes reasonable
for HMMs. For example, Gales and Young (2007) infer spoken
words from many relatively short audio files, and they assume
that each audio file is independent from one another. However,
the assumption of independence is generally violated for HMMs
designed for long, sequentially-dependent time series. Long
time series are increasingly common in practice and are the
focus of this article.
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Some work has been done to apply sub-linear inference
methods to HMMs for long time series. For example, Gotoh,
Hochberg, and Silverman (1998) divide a sequence of obser-
vations into segments and use the incremental EM algorithm
to perform inference. This approach assumes that segments
are independent of one another, which is not true in general.
Alternatively, Ye, Ma, and Qian (2017) define a sufficiently large
“buffer” before and after segments of data to minimize the
effect of serial dependence. However, the appropriate size of the
buffer can be difficult to calculate. More examples of sub-linear
inference techniques are given by Khreich et al. (2012), who
review on-line and incremental methods for HMM inference.
However, most of these methods assume either that the M step
of the EM algorithm is tractable (see sec. 3.2.1 of Khreich et al.
2012), or that the emissions of the HMM are discrete (Baldi and
Chauvin 1993).

In this article, we introduce a new inference method for
HMMs based on variance-reduced stochastic optimization. This
inference method updates the HMM parameters without iterat-
ing through the entire dataset. Critically, it does not require a
closed-form solution for its M step, does not require any buffer
tuning, and does not introduce error into the HMM likelihood.

We begin with a formal definition of HMMs, a brief review
of standard inference techniques for HMMs, and a description
of stochastic optimization algorithms before introducing our
algorithm. We then prove that our algorithm converges to a
local maximum of the likelihood (under standard regularity
assumptions) and note several practical considerations regard-
ing its implementation. Finally, we compare the efficiency of our
new algorithm to that of standard optimization techniques using
several simulation studies and a kinematic case study of eight
northern resident killer whales (Orcinus orca) off the western
coast of Canada.

2. Background

2.1. Hidden Markov Models

HMMs are common statistical models used to describe time
series that exhibit state-switching behavior. An HMM models an
observed sequence of length T, Y = {Yt}T

t=1, together with an
unobserved (or “hidden”) sequence X = {Xt}T

t=1. The hidden
sequence X is a Markov chain, and each observation Yt is a
random variable, where Yt given all other observations (Y\{Yt})
and hidden states (X) depends only on Xt . We assume Xt ∈
{1, . . . , N} for some finite N. The unconditional distribution
of X1 is denoted by the row-vector δ = (

δ(1) · · · δ(N)
)
,

where δ(i) = P(X1 = i). Further, the distribution of Xt for
t > 1 conditioned on Xt−1 is denoted by an N-by-N transition
probability matrix

�t =
⎛
⎜⎝

�
(1,1)
t · · · �

(1,N)
t

...
. . .

...
�

(N,1)
t · · · �

(N,N)
t

⎞
⎟⎠ , (1)

where �
(i,j)
t = P(Xt = j | Xt−1 = i). For simplicity, we assume

that �t does not change over time (i.e., �t = � for all t) unless
stated otherwise.

To ensure that all entries are positive and all rows sum to
one, it is convenient to reparameterize the transition probability
matrix � ∈ R

N×N and initial distribution δ ∈ R
N in terms of

auxiliary variables η ∈ R
N×N and ν ∈ R

N :

�(i,j)(η) = exp(η(i,j))∑N
k=1 exp(η(i,k))

, δ(i)(ν) = exp(ν(i))∑N
k=1 exp(ν(k))

,

(2)
where i, j = 1, . . . , N and η(i,i) and ν(1) are set to zero for
identifiability. This formulation simplifies likelihood maximiza-
tion by removing constraints in the optimization problem. One
may also incorporate covariates into � by setting η

(i,j)
t (β) =(

β(i,j)
)�

zt , where zt is a column vector of known covariates at
time index t and β(i,j) is a column vector of unknown regression
coefficients. While � and δ are functions of η and ν, we abuse
notation in future sections and treat � and δ as variables since
the mappings are bijections.

If Xt = i, then we denote the conditional density or prob-
ability mass function of Yt as f (i)(·; θ(i)), where θ(i) are the
parameters describing the state-dependent distribution of Yt .
The collection of all state-dependent parameters is θ = {θ(i)}N

i=1.
For brevity, we denote the full set of parameters as φ = {θ , η, ν}.
Figure 1 shows an HMM as a graphical model.

Denote a fixed realization of observations Y and latent states
X as y = {yt}T

t=1 and x = {xt}T
t=1. The joint likelihood of an

HMM given y and x is

p(x, y; φ) = δ(x1)f (x1)(y1; θ(x1))

T∏
t=2

�(xt−1,xt)f (xt)(yt ; θ(xt)). (3)

Alternatively, the marginal likelihood of the observed data y
alone is

p(y; φ) = δP(y1; θ)

T∏
t=2

�P(yt ; θ)1�
N , (4)

Figure 1. Graphical representation of an HMM. Xt corresponds to an unobserved latent state at time t whose distribution is described by a Markov chain. Yt corresponds
to an observation at time t, where Yt given all other observations Y \ {Yt} and hidden states X depends only on Xt .
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where 1N is an N-dimensional row vector of ones and P(yt ; θ) is
an N × N diagonal matrix with entry (i, i) equal to f (i)(yt ; θ(i)).
For a more complete introduction to HMMs, see Zucchini,
Macdonald, and Langrock (2016).

2.2. State Decoding

One appealing feature of HMMs is that it is simple to determine
the distribution of a given hidden state (Xt) conditioned on a set
of observations y. Assuming that the HMM parameters φ are
fixed, define the probability density of the observations between
times s and t as p(ys:t ; φ). Likewise, define forward probabilities
α

(i)
t = p(y1:t , Xt = i; φ) (for i = 1, . . . , N and t = 1, . . . , T)

and backward probabilities β
(i)
t = p(y(t+1):T | Xt = i; φ)

(for i = 1, . . . , N and t = 1, . . . , T − 1). By convention,
β

(i)
T = 1 for i = 1, . . . , N. We thus define the row vectors

αt =
(
α

(1)
t · · · α

(N)
t

)
and β t =

(
β

(1)
t · · · β

(N)
t

)
. Both

αt and β t can be calculated using the following recursions:

α1 = δ P(y1; θ), αt = αt−1 � P(yt ; θ), t = 2, . . . , T,
(5)

β�
T = 1�

N , β�
t = � P(yt+1; θ) β�

t+1, t = 1, . . . , T − 1.
(6)

We define conditional probabilities γ
(i)
t = P(Xt = i | Y =

y ; φ) and ξ
(i,j)
t = P(Xt−1 = i, Xt = j | Y = y ; φ). We also

define the row vector γ t =
(
γ

(1)
t · · · γ

(N)
t

)
and the matrix

ξ t =
⎛
⎜⎝

ξ
(1,1)
t · · · ξ

(1,N)
t

...
. . .

...
ξ

(N,1)
t · · · ξ

(N,N)
t

⎞
⎟⎠ , t = 2, . . . , T.

Both γ t and ξ t can be calculated from αt−1, αt , β t , �, and θ . Let
diag(·) map a row vector to the diagonal matrix with that row
vector as its diagonal. Then,

γ
(i)
t = α

(i)
t β

(i)
t

αt β�
t

, γ t = αt diag(β t)

αt β�
t

, (7)

ξ
(i,j)
t = α

(i)
t−1 �(i,j) f (j)(yt ; θ(j)) β

(j)
t

αt−1 � P(yt ; θ) β�
t

, (8)

ξ t = diag(αt−1) � P(yt ; θ) diag(β t)

αt−1 � P(yt ; θ) β�
t

. (9)

For shorthand, we define the sets {α, β , γ , ξ} =
{αt , β t , γ t , ξ t}T

t=1 to summarize the conditional probabilities
for all t. In future sections, when φ is not fixed (e.g.,
during the parameter estimation procedures), we add
an argument to the conditional probabilities and write
{α(φ), β(φ), γ (φ), ξ(φ)} = {αt(φ), β t(φ), γ t(φ), ξ t(φ)}T

t=1
to highlight the dependence on φ.

2.3. The Baum-Welch Algorithm

The Baum-Welch algorithm is an iterative algorithm used to
estimate the parameters of an HMM. It predates the more gen-
eral EM algorithm (Dempster, Laird, and Rubin 1977), but the

two are equivalent when applied to HMMs. At iteration k of the
EM algorithm, denote the current parameter estimate as φk. One
iteration of the EM algorithm consists of an expectation (or E)
step, followed by a maximization (or M) step. For the E step, the
function value Q(φ | φk) is defined as the expected value of the
joint log-likelihood log p(X, y; φ) taken with respect to X, where
X has conditional probability mass function p(X | Y = y; φk).
For the M step, the next parameter estimate φk+1 is found by
maximizing Q(φ | φk) with respect to φ:

Q(φ | φk) = Eφk

[
log p(X, y; φ) | Y = y

]
, (10)

φk+1 = arg max
φ

Q(φ | φk). (11)

For notational convenience, we occasionally denote the set
of conditional probabilities {αt(φk), β t(φk), γ t(φk), ξ t(φk)} as
{αk,t , βk,t , γ k,t , ξ k,t}. Substituting (3) into (10) and performing
some algebra yields a closed form expression for Q:

Q(φ | φk) =
N∑

i=1
γ

(i)
k,1 log δ(i)(ν) +

T∑
t=1

N∑
i=1

γ
(i)
k,t log f (i)(yt ; θ(i))

+
T∑

t=2

N∑
i=1

N∑
j=1

ξ
(i,j)
k,t log �(i,j)(η). (12)

The conditional probabilities γ
(i)
k,t and ξ

(i,j)
k,t thus act as weights for

log δ(i)(ν), log f (i)(yt ; θ(i)), and log �(i,j)(η) for i, j = 1, . . . , N.
We thus refer to γ and ξ as weights in future sections. Detailed
pseudocode for the E and the M step are given in Algo-
rithms 1 and 2. In some simple scenarios, the maximization
problem in (11) above has a closed-form solution. However, this
maximization problem is not always straightforward and often
requires numerical maximization techniques. We thus review
different methods for numerical maximization via stochastic
optimization.

Algorithm 1 E-step(φ)
Require: Parameter value φ = {θ , η, ν}.

1: δ = δ(ν), � = �(η)

2: α1 = δ P(y1; θ)

3: β�
T = 1�

N
4: for t = 2, . . . , T do
5:

αt = αt−1 � P(yt ; θ), β�
T−t+1 = � P(yT−t+2; θ) β�

T−t+2

6: end for
7: γ 1 = α1 diag(β1)

α1 β�
1

8: for t = 2, . . . , T do
9:

γ t = αt diag(βt)

αt β�
t

, ξ t = diag(αt−1) � P(yt ; θ) diag(β t)

αt−1 � P(yt ; θ) β�
t

10: end for
11: return {αt , β t , γ t , ξ t}T

t=1
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Algorithm 2 Baum-Welch(φ0, K)

Require: Initial parameter values φ0, number of iterations K
1: for k = 0, . . . , K − 1 do
2: {αk,t , βk,t , γ k,t , ξ k,t}T

t=1 = E-step(φk) � E step
3: � M step

φk+1 = arg max
{θ ,η,ν}

N∑
i=1

γ
(i)
k,1 log δ(i)(ν) +

T∑
t=1

N∑
i=1

γ
(i)
k,t log f (i)(yt ; θ(i))

+
T∑

t=2

N∑
i=1

N∑
j=1

ξ
(i,j)
k,t log �(i,j)(η)

4: end for
5: return φK

2.4. Stochastic Optimization

Stochastic optimization involves a class of optimization methods
that use random variables to maximize or minimize an objec-
tive function. We focus on optimization methods to minimize
objective functions that can be written as a sum of many terms
(Robbins and Monro 1951), namely to solve

φ∗ = arg min
φ

F(φ), where F(φ) = 1
T

T∑
t=1

Ft(φ). (13)

We denote the parameter values at step m of an optimization
scheme as φ(m) = {θ (m), η(m), ν(m)} to distinguish between the
parameter values φk at iteration k of the Baum-Welch algorithm.
The bold parameters θ (m), η(m), and ν(m) correspond to opti-
mization step m and are not to be confused with θ(i), η(i,j), and
ν(i) which correspond to hidden states i and j of the HMM.
Standard gradient descent at a given step m with step size λ

updates the parameter value φ(m) by moving in the direction of
the negative gradient of F. Formally, the update step is φ(m+1) =
φ(m) −λ∇F(φ(m)), or φ(m+1) = φ(m) − (λ/T)

∑T
t=1 ∇Ft(φ

(m))

for our problem. The step size λ is user-defined. It should be
large enough so φ(m+1) moves quickly toward a minimum of
F, but not so large that φ(m+1) “overshoots” the minimum. This
update requires evaluating a gradient for all t = 1, . . . , T, which
can be prohibitively expensive if T is large.

In contrast, stochastic gradient descent (SGD) updates φ

using φ(m+1) = φ(m) − λm∇Ftm(φ(m)), where tm ∈ {1, . . . , T}
is selected uniformly at random at step m of the algorithm
(Robbins and Monro 1951). Stochastic gradient descent reduces
the amount of time between updates by using an unbiased
estimate of the gradient to update φ(m). However, the gradient
estimates can have very high variance, so stochastic gradient
descent requires that the step size λm is smaller than that of full
gradient descent. The step size must also decay to zero as m →
∞ to ensure convergence. Further, SGD has slower convergence
rates than full gradient descent (Schmidt, Le Roux, and Bach
2017).

Variance-reduced stochastic optimization techniques such as
stochastic average gradient (SAG) (Schmidt, Le Roux, and Bach
2017), stochastic variance reduced gradient (SVRG) (Johnson
and Zhang 2013), and stochastic average gradient accelerated
(SAGA) (Defazio, Bach, and Lacoste-Julien 2014) enjoy the
speed of stochastic gradient descent as well as the conver-
gence rates of full gradient descent. These algorithms involve

storing gradient approximations at each gradient step m, ∇̂F(m)
t

for t = 1, . . . , T, whose average approximates the full gra-
dient ∇F(φ(m)). The gradient approximations are updated at
various stages in the optimization algorithm and are used to
reduce the variance of the full gradient estimate. For exam-
ple, SVRG and SAGA update φ(m) via φ(m+1) = φ(m) −
λm

[
∇Ftm(φ(m)) − ∇̂F(m)

tm + ∇̂F(m)
]

, where tm ∈ {1, . . . , T} is

chosen uniformly at random and ∇̂F(m) = (1/T)
∑T

t=1 ∇̂F(m)
t .

Like SGD, this stochastic update has the same expectation as that
of standard gradient descent, but it empirically exhibits lower
variance than SGD and it is guaranteed to converge without
decaying the step size λm (under certain regularity conditions).
After updating the parameters at step m, SAGA updates the
gradient approximation ∇̂F(m+1)

tm and recalculates the resulting
gradient average ∇̂F(m+1). Algorithm 3 outlines SVRG and
SAGA in pseudocode, and we denote it as variance-reduced
stochastic optimization, or VRSO.

Algorithm 3 VRSO(F, φ(0), λ, A, M)

Require: Loss function F = 1
T

∑T
t=1 Ft , initial value φ(0), step

size λ, algorithm A ∈ {SVRG, SAGA}, and number of
iterations M.

1: for t = 1, . . . , T do � initialize gradients
2: ∇̂F(0)

t = ∇Ft(φ
(0))

3: end for
4: ∇̂F(0) = (1/T)

∑T
t=1 ∇̂F(0)

t
5: for m = 0, . . . , M − 1 do
6: Pick tm ∈ {1, . . . , T} uniformly at random.
7: � update parameters

φ(m+1) = φ(m) − λ
[
∇Ftm(φ(m)) − ∇̂F(m)

tm + ∇̂F(m)
]
(14)

8: ∇̂F(m+1)
t = ∇̂F(m)

t for t = 1, . . . , T � update gradient
approximations and average

9: if A = SAGA then:

∇̂F(m+1)
tm = ∇Ftm(φ(m)) (15)

∇̂F(m+1) = ∇̂F(m) + 1
T

(
∇̂F(m+1)

tm − ∇̂F(m)
tm

)
(16)

10: end if
11: end for
12: return φ(M)

SAGA involves running Algorithm 3 until convergence.
However, the gradient approximations ∇̂F(m)

t are never updated
when using SVRG within Algorithm 3. As such, SVRG requires
repeatedly running Algorithm 3 with M scaling approximately
with T so the set of gradient approximations remains up-to-date.

3. Stochastic Optimization for HMM Inference

Both the E step and the M step of the Baum-Welch algorithm
are expensive when the length of the observation sequence (T)
is large. The E step is expensive because γ t(φk) and ξ t(φk) must
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be calculated for t = 1, . . . , T to define Q(φ | φk). If closed-form
solutions to (11) are not readily available, then the M step is also
expensive because evaluating full gradients of Q(φ | φk) takes
O(T) time. In this section, we introduce an original algorithm
that speeds up both the expensive M step as well as the expensive
E step of the Baum-Welch algorithm.

3.1. Variance-Reduced Stochastic M Step

To speed up the expensive M step, we notice from (12) that Q
is a large sum and thus implement variance-reduced stochastic
optimization. It is straightforward to reframe the M step of
iteration k of the Baum Welch algorithm from (11) so it looks
like the minimization problem from (13). To do so, we define
ξ 1 = ∅ and the loss function F(· | γ , ξ) as follows:

F(φ | γ , ξ) = 1
T

T∑
t=1

Ft(φ | γ t , ξ t), where (17)

F1(φ | γ 1, ξ 1) = −
N∑

i=1
γ

(i)
1 log f (i)(yt ; θ(i)) −

N∑
i=1

γ
(i)
1 log δ(i)(ν),

(18)

Ft(φ | γ t , ξ t) = −
N∑

i=1
γ

(i)
t log f (i)(yt ; θ(i))

−
N∑

i=1

N∑
j=1

ξ
(i,j)
t log �(i,j)(η), t = 2, . . . , T. (19)

The two functions F and Q are closely related to one another, as
F(φ | γ (φk), ξ(φk)) = −Q(φ | φk)/T. However, we make a
distinction between the two to bridge the gap between existing
EM literature (which uses Q) and stochastic optimization liter-
ature (which uses F). At any iteration k of the EM algorithm,
the loss function F(· | γ (φk), ξ(φk)) can be minimized using
Algorithm 3.

There are additional reasons to use SAGA and SVRG within
the Baum-Welch algorithm beyond the standard benefits of
variance-reduced stochastic optimization. Traditionally, SAGA
is more memory intensive than SVRG because the gradient at
every index must be stored. However, the Baum-Welch algo-
rithm involves storing weights for each time index t to define
F(· | γ (φk), ξ(φk)), so storing each gradient for SAGA is
not considerably more memory intensive than the Baum-Welch
algorithm itself. Alternatively, SVRG can be more computation-
ally expensive than SAGA partially because it requires period-
ically recalculating the full gradient approximation ∇̂F(0), and
this involves a full pass of the underlying dataset. However, the
E step of the Baum-Welch algorithm also involves a full pass
of the dataset, so using SVRG is not considerably more com-
putationally expensive than the Baum-Welch algorithm itself.
In this way, using either SAGA or SVRG in the M step adds
minimal computational and memory complexity to the Baum-
Welch algorithm.

3.2. Partial E Step within the M Step

Variance-reduced stochastic optimization reduces the compu-
tational cost of the M step, but the E step itself still has a time

complexity of O(T), which can be prohibitive for large T. To
decrease this computational burden, Neal and Hinton (1998)
justify a partial E step within the EM algorithm for general latent
variable models. However, they assume that the optimization of
the M step has a closed-form solution. We use their method as
inspiration and add a partial E step to the stochastic M step of
the Baum-Welch algorithm.

Consider running one iteration of our version of the Baum-
Welch algorithm with an initial parameter estimate φ(0).
The E step involves calculating the conditional probabilities
γ (φ(0)) and ξ(φ(0)), and the M step involves running variance-
reduced stochastic optimization with loss function F(· |
γ (φ(0)), ξ(φ(0))) and initial parameter value φ(0). Now, suppose
φ(m) is to be updated using a gradient estimate using a random
observation index tm. The function Ftm(· | γ tm(φ(0)), ξ tm(φ(0)))

depends on γ tm(φ(0)) and ξ tm(φ(0)), each of which are vectors of
conditional probabilities given φ(0). However, φ(0) is an out-of-
date parameter estimate since the current parameter estimate is
φ(m). Therefore, it is natural to update γ tm and ξ tm and redefine
Ftm(· | γ tm , ξ tm) before calculating φ(m+1).

A naive method would be to calculate the new conditional
probabilities γ tm(φ(m)) and ξ tm(φ(m)) and then update Ftm as
Ftm(· | γ tm(φ(m)), ξ tm(φ(m))). This would ensure that γ tm and
ξ tm are completely up-to-date, but evaluating γ tm(φ(m)) and
ξ tm(φ(m)) takes O(TN2) time and requires a full E step. Instead,
our goal is to update γ tm and ξ tm in a way that does not scale
with T.

To this end, we define the mappings α̃t , β̃ t , γ̃ t , and ξ̃ t for
t = 1, . . . , T similarly to (5)–(9). If a ∈ R

N and b ∈ R
N are

generic row vectors, then:

α̃1(a, φ) = δ P(y1; θ), α̃t(a, φ) = a � P(yt ; θ),
t = 2, . . . , T, (20)

β̃
�
T (b, φ) = 1�

N , β̃
�
t (b, φ) = � P(yt+1; θ) b�,

t = 1, . . . , T − 1, (21)

γ̃ t(a, b) = a diag(b)

a bT , t = 1, . . . , T, (22)

ξ̃ t(a, b, φ) = diag(a) � P(yt ; θ) diag(b)

a � P(yt ; θ) b� , t = 2, . . . , T, (23)

all of which take O(N2) time to compute. We have designed
these mappings so that α̃1(a, φ) = α1(φ) , α̃t(αt−1(φ), φ) =
αt(φ) , β̃

�
T (b, φ) = β�

T (φ) , and β̃
�
t (β t+1(φ), φ) = β�

t (φ).
At the beginning of the M step we define conditional prob-

ability approximations α̂
(0)
t = αt(φ

(0)), β̂
(0)

t = β t(φ
(0)),

γ̂
(0)
t = γ t(φ

(0)), and ξ̂
(0)

t = ξ t(φ
(0)) for t = 1, . . . , T. This

is simply the E step of the Baum-Welch algorithm and takes
O(TN2) time to compute. Then, at any given step m of the
stochastic M step, we update Ftm by first updating α̂

(m+1)
tm =

α̃tm

(
α̂

(m)
tm−1 , φ(m)

)
and β̂

(m+1)

tm = β̃ tm

(
β̂

(m)

tm+1 , φ(m)
)

, fol-

lowed by γ̂
(m+1)
tm = γ̃ tm

(
α̂

(m+1)
tm , β̂

(m+1)

tm

)
and ξ̂

(m+1)

tm =
ξ̃ tm

(
α̂

(m+1)
tm−1 , β̂

(m+1)

tm , φ(m)
)

. Finally, the loss function at index

tm can be defined as Ftm

(
·
∣∣∣ γ̂

(m+1)
tm , ξ̂ (m+1)

tm

)
. Updating Ftm in
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Algorithm 4 VRSO-PE({̂α(0)
t , β̂(0)

t , γ̂ (0)
t , ξ̂ (0)

t }T
t=1, φ(0), λ, A,

P, M)

Require: Initial conditional probability approximations
{̂α(0), β̂(0), γ̂ (0), ξ̂ (0)}, initial parameters φ(0), step size λ,
algorithm A ∈ {SVRG, SAGA}, whether to do a partial-E
step P ∈ {True,False}, and number of iterations M.

1: for t = 1, . . . , T do � initialize gradients
2: ∇̂F(0)

t = ∇Ft
(
φ(0)

∣∣∣ γ̂
(0)
t , ξ̂ (0)

t

)
3: end for
4: ∇̂F(0) = (1/T)

∑T
t=1 ∇̂F(0)

t
5: for m = 0, . . . , M − 1 do:
6: Pick tm ∈ {1, . . . , T} uniformly at random.
7:

{
α̂

(m+1)
t , β̂(m+1)

t , γ̂ (m+1)
t , ξ̂ (m+1)

t

}
={

α̂
(m)
t , β̂(m)

t , γ̂ (m)
t , ξ̂ (m)

t

}
for t = 1, . . . , T.

8: if P = True then � partial E step
9: α̂

(m+1)
tm = α̃tm

(
α̂

(m)
tm−1, φ(m)

)
,

β̂
(m+1)

tm = β̃ tm

(
β̂

(m)

tm+1, φ(m)
)

10: γ̂
(m+1)
tm = γ̃ tm

(
α̂

(m+1)
tm , β̂(m+1)

tm

)
,

ξ̂
(m+1)

tm = ξ̃ tm

(
α̂

(m+1)
tm−1 , β̂(m+1)

tm , φ(m)
)

11: end if
12: � update parameters

φ(m+1) = φ(m) − λ
[
∇Ftm

(
φ(m)

∣∣∣ γ̂
(m+1)
tm , ξ̂ (m+1)

tm

)

−∇̂F(m)
tm + ∇̂F(m)

]
(24)

13: ∇̂F(m+1)
t = ∇̂F(m)

t for t = 1, . . . , T � update gradients
14: if A = SAGA then:

∇̂F(m+1)
tm = ∇Ftm

(
φ(m)

∣∣∣ γ̂
(m+1)
tm , ξ̂ (m+1)

tm

)
, (25)

∇̂F(m+1) = ∇̂F(m) + 1
T

(
∇̂F(m+1)

tm − ∇̂F(m)
tm

)
. (26)

15: end if
16: end for
17: return φ(M)

this way take a total of O(N2) time, which accomplishes a
parameter update step that does not scale with T. Algorithm 4
outlines the M step of the Baum-Welch algorithm with a partial
E step integrated in.

The partial E step detailed above is closely related to belief
propagation, an algorithm that calculates conditional probabil-
ities of variables within graphical models (Pearl 1982). In fact,
the E step of the Baum-Welch algorithm is a specific instance of
belief propagation, where (20)–(23) above correspond to “pass-
ing messages” within the graphical model. Belief propagation
can only perform exact inference on acyclic graphical mod-
els (including HMMs), but a generalization called loopy belief
propagation can perform approximate inference on general
graphical models (Pearl 1988). Practitioners balance approxima-
tion error and computational complexity to decide how long to
run loopy belief propagation. Likewise, we consider computa-
tional complexity when running belief propagation and evaluate

Algorithm 5 EM-VRSO(φ0, λ, A, P, M, K) (Version 1)
Require: Initial parameters (φ0), step size (λ), algorithm A ∈

{SVRG, SAGA}, whether to do a partial E step P ∈
{True,False}, iterations per update (M), and number of
updates (K).

1: for k = 0, . . . , K − 1 do
2: {αk,t , βk,t , γ k,t , ξ k,t}T

t=1 = E-step(φk) � E step
3: � ← 0 � M step
4: while � = 0 or log p(y; φk,�) < log p(y; φk) do
5: � ← � + 1
6: φk,� = VRSO-PE({αk,t , βk,t , γ k,t , ξ k,t}T

t=1,
φk, λ, A, P, M)

7: end while
8: φk+1 = φk,�
9: end for

10: return φK

(20)–(23) only once to approximate γ tm(φ(m)) and ξ tm(φ(m)).
This forms the basis of the partial E step within the stochastic M
step of our modified Baum-Welch algorithm.

3.3. Full Algorithm

In principal, it is possible to run Algorithm 4 alone without
ever performing a full E step. However, if no partial E step is
used (i.e., P = False) or if SVRG is used as the optimization
algorithm, then either the conditional probability approxima-

tions
{
α̂

(m)
t , β̂(m)

t , γ̂ (m)
t , ξ̂ (m)

t

}T

t=1
or the gradient approxima-

tions
{
∇̂F(m)

t

}T

t=1
will not be updated and become out-of-date.

To avoid this issue, Algorithm 5 combines the M step defined in
Algorithm 4 with a full E step to complete our new Baum-Welch
algorithm for HMMs.

There are two versions of EM-VRSO. Version 1
(Algorithm 5), requires the likelihood to not decrease (i.e.,
log p(y; φk,�) ≥ log p(y; φk)) in order to exit the while loop
of the M step. Version 2 (Algorithm 6) requires the likelihood
to strictly increase by some threshold to exit the while loop of
the M step. We use version 2 to prove theoretical results, but
the strict threshold relies on values that are usually not known
in practice. Therefore, we use version 1 in our simulation and
case studies and defer version 2 to the online appendix. Our
simulation and case studies show that version 1 of EM-VRSO
converges to local maxima of the log-likelihood function in
practice.

At first, it seems troubling to require log p(y; φk,�) ≥
log p(y; φk) to exit the while loop of EM-VRSO, since this
requirement may cause an infinite loop if it cannot be met. In
practice, we found that the log-likelihood increased after a pass
through the M step in most cases unless the step size λ was very
large. As such, we detail how to adaptively select λ in Section 4.4.
For a theoretical justification that the while loop terminates,
denote �∗(k) as the (random) number of runs through the inner
loop of EM-VRSO for iteration k (i.e., the maximum value
obtained by � for a given value of k). We prove in Theorem 1 that
P(�∗(k) < ∞) = 1. One final concern is whether the sequence
{φk}∞k=0 generated by EM-VRSO converges to a local maximum
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of the likelihood as K → ∞. Theorem 1 guarantees such
convergence under standard regularity conditions. We prove
Theorem 1 in the online appendix.

Theorem 1. Suppose the following conditions are met in Algo-
rithm 6 with P = False and A = SVRG:

1. The parameters φ lie in � = R
r for some dimension r.

2. �φ0 = {φ ∈ � : log p(y; φ) ≥ log p(y; φ0)} is compact for all
φ0 if log p(y; φ0) > −∞.

3. log p(y; φ) is differentiable in φ for all φ ∈ �.
4. Ft(φ | γ t(φ

′), ξ t(φ
′)) is convex with respect to φ and F(φ |

γ (φ′), ξ(φ′)) is strongly convex with respect to φ for all φ′
with constant C > 0. Namely, for all φ, φ0 and φ′:

Ft(φ | γ t(φ
′), ξ t(φ

′)) ≥ Ft(φ0 | γ t(φ
′), ξ t(φ

′))
+ ∇Ft(φ0 | γ t(φ

′), ξ t(φ
′))T(φ − φ0), (27)

F(φ | γ (φ′), ξ(φ′)) ≥ F(φ0 | γ (φ′), ξ(φ′))

+ ∇F(φ0 | γ (φ′), ξ(φ′))T(φ − φ0) + C
2

‖φ − φ0‖2
2.
(28)

5. Ft(φ | γ t(φ
′), ξ t(φ

′)) is uniformly Lipschitz-smooth with
respect to φ for all t and φ′ with constant L ≥ C > 0. Namely,
for all t, φ, φ0 and φ′:

Ft(φ | γ t(φ
′), ξ t(φ

′)) ≤ Ft(φ0 | γ t(φ
′), ξ t(φ

′))

+ ∇Ft(φ0 | γ t(φ
′), ξ t(φ

′))T(φ − φ0) + L
2
‖φ − φ0‖2

2.
(29)

6. The step size λ is sufficiently small and M is sufficiently large
such that

ζ = 1
Cλ(1 − 2Lλ)M

+ 2Lλ

1 − 2Lλ
< 1. (30)

7. ∇Ft(φ | γ t(φ
′), ξ t(φ

′)) is uniformly continuous in (φ, φ′) for
all t.

Further, let S = {�∗(k) < ∞ for all k}. Then, P{S} = 1, and
the following holds on S : all limit points of {φk}∞k=0 are sta-
tionary points of log p(y; ·), and log p(y; φk) converges mono-
tonically to log p∗ = log p(y; φ∗) for some stationary point of
log p(y; ·), φ∗.

Conditions 1–3 are from Wu (1983) and are standard
assumptions needed to prove the convergence of the EM algo-
rithm. Likewise, Conditions 4–6 are from Johnson and Zhang
(2013) and are standard assumptions used to prove common
properties of stochastic optimization algorithms. Condition 7 is
needed to prove that SVRG is a continuous mapping.

Condition 2 from Wu (1983) and condition 5 of Johnson
and Zhang (2013) can be restrictive and are often violated in
common settings. For example, both are violated when estimat-
ing the variance of normal state-dependent distributions within
an HMM. This issue is well-known for maximum likelihood
estimation in mixture models (Chen and Li 2009; Liu, Wu, and
Meeker 2015). It can be avoided by setting lower bounds on
the variance components (Zucchini, Macdonald, and Langrock
2016).

Condition 4 seems concerning at first because the log-
likelihood of a hidden Markov model is usually multi-modal
and non-convex. However, the convexity condition applies to Ft
rather than the log-likelihood itself. In addition, Ft is a linear
combination of probability densities, which are often convex in
θ (Boyd and Vandenberghe 2004), and log-sum-exp functions,
which are convex in ν and η. Even if Ft is not convex, stochastic
gradient methods can escape local optima within the M step
more effectively than standard gradient descent (Kleinberg, Li,
and Yuan 2018).

Theorem 1 guarantees convergence only to a local optimum
of the likelihood for version 2 of EM-VRSO with P = False
and A = SVRG. However, some studies suggest that EM algo-
rithms like EM-VRSOmay escape local optima of the likelihood
faster than direct numerical optimization of the log-likelihood
(Zhang, Poupart, and Trimponias 2020).

Unfortunately, the convergence analysis for EM-VRSO
becomes more complex when P = True, as the E and M steps
are intertwined. Nonetheless, Theorem 2 below demonstrates
that stationary points of the log-likelihood function serve as
fixed points of Algorithm 5 for all values of P and A. The proof
of Theorem 2 is provided in the online appendix.

Theorem 2. If ∇ log p(y; φ0) = 0, then for all λ ∈ R, A ∈
{SAGA, SVRG}, P ∈ {True,False}, M ∈ N, and K ∈ N,
EM-VRSO(φ0, λ, A, P, M, K) = φ0 with probability 1, where
EM-VRSO is defined in Algorithm 5.

Theorem 2 is useful because it guarantees that Algorithm 5
does not change φ0 when it is a stationary point of the likelihood.
However, it makes no guarantees that Algorithm 5 will converge
if ∇ log p(y; φ0) �= 0 and either P = True or A = SAGA.
Nonetheless, we see in our simulation and case studies that Algo-
rithm 5 approaches local maxima of the log-likelihood function
faster than existing full-batch baselines for all values of P and
A. For theoretical guarantees on convergence, practitioners can
set P = True or A = SAGA for a predetermined number of
iterations, followed by switching to P = False and A = SVRG,
or a full-gradient method such as BFGS (Fletcher 2000).

4. Practical Considerations

Algorithm 5 outlines a method to perform the Baum-Welch
algorithm with a stochastic E and M step. This section outlines
implementation details that improve its practical performance.

4.1. Line Search for Step Size Selection

One drawback of stochastic optimization is that the step size
can greatly affect the practical performance of the algorithm.
Defazio, Bach, and Lacoste-Julien (2014) suggest a step size of
λ = 1/(3L) for SAGA, where L is the Lipschitz constant defined
in Theorem 1. However, the Lipschitz constants are rarely
known in practice. Therefore, following Schmidt, Le Roux, and
Bach (2017), we initialize an estimate of the Lipschitz constant,
L̂, and update it if the following inequality does not hold at any
step m of the optimization algorithm:
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F(m+1)
tm

(
φ(m) − 1

L̂
∇F(m+1)

tm (φ(m))
)

≤ F(m+1)
tm

(
φ(m)

)

− 1
2L̂

∥∥∥∇F(m+1)
tm (φ(m))

∥∥∥2
, where

F(m+1)
tm = Ftm

(
·
∣∣∣ γ̂

(m+1)
tm , ξ̂ (m+1)

tm

)
. (31)

The inequality above is obeyed if L̂ = L, so if it is violated,
then we double the Lipschitz constant estimate L̂. We also
follow Schmidt, Le Roux, and Bach (2017) and do not check
the inequality if ‖∇F(m+1)

tm (φ(m))‖2 < 10−8 due to numerical
instability.

In addition, the Lipschitz constant L is a global quantity,
but the algorithm will likely remain in a neighborhood around
a local maximum of F later in the optimization algorithm.
Within this local neighborhood, a smaller value of L may apply
(Schmidt, Le Roux, and Bach 2017), so the Lipschitz constant
estimate is decreased by a small amount after each parameter
update: L̂ ← 2−1/T L̂. Updating L̂ after each parameter update
allows the step size of the optimization algorithm to adapt to
the smoothness of the objective function close to the optimum
value.

4.2. Multiple Step Sizes

The optimization problem within the M step of the Baum-Welch
algorithm can be written as separate optimization problems over
θ , η, and ν (recall that φ = {θ , η, ν}). In particular, we can
rewrite Ft as Ft(φ | γ t , ξ t) = Gt(θ | γ t , ξ t) + Ht(η, ν | γ t , ξ t),
where

Gt(θ | γ t , ξ t) = −
N∑

i=1
γ

(i)
t log f (i)(yt ; θ(i)), t = 1, . . . , T,

(32)

H1(η, ν | γ 1, ξ 1) = −
N∑

i=1
γ

(i)
1 log δ(i)(ν), (33)

Ht(η, ν | γ t , ξ t) = −
N∑

i=1

N∑
j=1

ξ
(i,j)
t log �(i,j)(η), t = 2, . . . , T.

(34)

To this end, let ∇̂G(m)
t be equal to the components of ∇̂F(m)

t that
correspond to θ , and let ∇̂H(m)

t be equal to the components of
∇̂F(m)

t that correspond to η and ν. Likewise, let ∇̂G(m) be equal
to the components of ∇̂F(m) that correspond to θ , and let ∇̂H(m)

be equal to the components of ∇̂F(m) that correspond to η and
ν. Then, we can rewrite the gradient step in the stochastic M step
of Algorithm 4 as

θ (m+1) = θ (m) − λθ

[
∇Gtm

(
θ (m)

∣∣∣ γ̂
(m+1)
tm , ξ̂ (m+1)

tm

)

−∇̂G(m)
tm + ∇̂G(m)

]
, (35)

{η, ν}(m+1) = {η, ν}(m) − λη,ν[
∇Htm

(
η(m), ν(m)

∣∣∣ γ̂
(m+1)
tm , ξ̂ (m+1)

tm

)

−∇̂H(m)
tm + ∇̂H(m)

]
. (36)

where λθ = λη,ν = λ. Note that Gt is a function of only θ and
Ht is a function of only η and ν for given γ̂ t and ξ̂ t and all t =
1, . . . , T. As such, we allow λθ �= λη,ν and have each depend
upon different Lipschitz constant estimates: λθ = 1/(3L̂G) and
λη,ν = 1/(3L̂H). The line search described in Section 4.1 was
then used to update the estimates L̂G and L̂H separately.

4.3. Adaptive Step Size for Fixed Lipschitz Constants

Under certain regularity conditions, Defazio, Bach, and Lacoste-
Julien (2014) prove that SAGA converges using a step size
of 1/(3L) for a given loss function F with Lipschitz constant
L. We therefore initialize step sizes of λθ = 1/(3L̂G) and
λη,ν = 1/(3L̂H) for all experiments and algorithms. How-
ever, for Algorithm 5 with P = True, the objective function
F(· | γ̂

(m+1)
tm , ξ̂

(m+1)

tm ) = G(· | γ̂
(m+1)
tm , ξ̂

(m+1)

tm ) + H(· |
γ̂

(m+1)
tm , ξ̂

(m+1)

tm ) itself changes over the course of a single M step
as γ̂

(m+1)
tm and ξ̂

(m+1)

tm are updated. As a result, more conservative
(i.e., smaller) step sizes λθ and λη,ν may be needed, even if
the Lipschitz constant estimates L̂G and L̂H are accurate. We
therefore allow Algorithm 5 to change the step size after each
attempt � through the M step of the Baum-Welch algorithm.
Namely, if the log-likelihood does not increase after iteration
k and attempt � through the M step of Algorithm 5 with P =
True, we halve the step size (as a function of either L̂G or L̂H)
for attempt �+1. For example, if the step sizes are λθ = 1/(3L̂G)

and λη,ν = 1/(3L̂H) for attempt � through a given M step, and
attempt � results in a decrease of the log-likelihood, we define
new step-sizes λθ ← 1/(6L̂G) and λη,ν ← 1/(6L̂H) for attempt
� + 1. We also maintain this halved step size for the remainder
of Algorithm 5.

4.4. Sampling for SAGA and SVRG Without Replacement

Finally, we sample each random index t without replacement
within Algorithm 4. If M > T, then we sample without replace-
ment until all time indices are sampled, and then resample the
dataset without replacement. Sampling without replacement for
SGD is often easier to implement and performs better than sam-
pling with replacement (Gürbüzbalaban, Ozdaglar, and Parrilo
2021). Shamir (2016) also gives several convergence results for
SVRG when indices are sampled without replacement.

5. Simulation Study

5.1. Simulation Procedure

To test the performance of Algorithm 5, we ran eight simula-
tion experiments. For a given experiment, we simulated T ∈
{103, 105} observations from an HMM with N ∈ {3, 6} hidden
states and observations yt ∈ R

d, with d ∈ {3, 6}. All possible
combinations of T, N, and d comprised a total of 23 = 8
experiments. For each experiment, we simulated five datasets.
For every experiment and dataset, Yt | Xt = i followed a
normal distribution with mean μ(i) and covariance matrix 
(i).
We defined μ(i) and 
(i) for every dataset as μ(i) ∼ N (0, I)
and 
(i) = diag[exp(−2)] for i ∈ {1, . . . , N} where I is the
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identity matrix. This simulation procedure resulted in relatively
well separated state-dependent distributions. For example, when
N = 3, the Euclidean distance between any pair of means
within any of the five datasets ranged between 1.0 and 4.0 for
d = 3 and between 2.0 and 4.7 for d = 6. We set the transition
probability matrices of the generating process to depend upon
T so that the expected number of total transitions was 100 for
all experiments. Our purpose in keeping the expected number
of transitions fixed was to induce a high degree of sequen-
tial dependence while simultaneously encouraging each hidden
state to be visited in the simulated time series. This decision also
simulates sequences of observations that are sampled at either
low (T = 103) or high (T = 105) frequencies. Denote the
true transition probability matrix from an experiment with T
observations and N hidden states as �T,N . We defined �103,3 ∈
R

3×3 to have diagonal elements of 0.9 and off-diagonal elements
of 0.05, �103,6 ∈ R

6×6 to have diagonal elements of 0.9 and
off-diagonal elements of 0.02, �105,3 ∈ R

3×3 to have diago-
nal elements of 0.999 and off-diagonal elements of 5 × 10−4,
and �103,6 ∈ R

6×6 to have diagonal elements of 0.999 and
off-diagonal elements of 2 × 10−4. We randomly defined the
initial distribution as δ ∼ dir(1N) for every experiment and
dataset.

5.2. Optimization Procedure

We estimated the parameters of the generating model for all five
datasets and all eight experiments using six different versions of
Algorithm 5. In particular, we used A ∈ {SVRG, SAGA}, and for
each value of A, we used the combinations {P = False, M =
T}, {P = True, M = T}, and {P = True, M = 10T}.
Recall that setting P = True corresponds to integrating a
partial E step into the variance-reduced stochastic M step. The
variable M corresponds to the number of iterations of SAGA
or SVRG that are performed at each M step of the algorithm.
It is natural to set M = T to approximately balance the
computational load of the E step and the M step. Nonetheless,
we ran an experiment with M = 10T and P = True
to test the algorithm when the majority of the computational
load was placed on the combined partial E / stochastic M
step. As a baseline, we also estimated the HMM parameters
using direct likelihood maximization via three gradient-based
methods: BFGS (Fletcher 2000), the conjugate gradient method
(Fletcher and Reeves 1964), and full-batch gradient descent.
The model used in our simulation study has closed-form solu-
tions to the M step of the Baum-Welch algorithm. However,
we did not include the standard Baum-Welch algorithm as a
baseline method because we did not want to rely on closed-form
solutions to the M step. If such solutions exist in practice, we
recommend using either the standard Baum-Welch algorithm
or the Baum-Welch algorithm with a partial E step (Neal and
Hinton 1998).

We sampled a total of five random parameter initializations
for each dataset/experiment pair, and then ran all nine optimiza-
tion algorithms on every parameter initialization. Each param-
eter initialization was reused for each algorithm to ensure con-
sistency. Throughout the optimization procedure, we assumed
that 
(i) was diagonal for all i ∈ {1, . . . , N}, which is in

line with the generating model described earlier. Further, we
reparameterized 
(i) as 
(i) = diag

[
exp(ρ(i))

]
and performed

inference on ρ(i) =
(
ρ

(i)
1 . . . ρ

(i)
d

)
for i = 1, . . . , N, which

is unconstrained. Let ȳ denote the sample mean and Q denote
the sample covariance of the observation sequence {yt}T

t=1. We
initialized θ0 = {μ(i)

0 , ρ(i)
0 }N

i=1 as μ
(i)
0 ∼ N (ȳ, diag(Q)) and

ρ
(i)
0 ∼ N

(
log(diag(Q)), 2I

)
for i = 1, . . . , N. We initialized

ν0 as ν
(i)
0 ∼ N (0, 1) for i = 2, . . . , N and we initialized η0

as η
(i,j)
0 ∼ N (−2, 22) for i, j = 1, . . . , N, where i �= j. All

six algorithms were initialized with step sizes of λθ = 1/3L̂G
and λη,ν = 1/3L̂H . The Lipschitz constants were initialized as
L̂G = L̂H = 100/3 and updated during the optimization routine
according to the procedure from Section 4.1. All algorithms and
baselines were run for a total of 12 hr on the Compute Canada
Cedar cluster on nodes with 16GB of RAM. All baselines were
implemented using the Scipy library in Python (Virtanen et al.
2019), and we implemented Algorithm 5 using a custom Python
script.

We employed several measures to fairly compare the perfor-
mance of each optimization algorithm. To account for differ-
ences in speed due to implementation discrepancies, we mea-
sured computational complexity in epochs in addition to raw
computation time. We define one epoch as either T evaluations
of (20)–(23) in the E step of Algorithm 5, T stochastic gradient
evaluations in the M step of Algorithm 5, or one gradient eval-
uation in the full-gradient baseline algorithms. We estimated
the true maximum likelihood parameters φ∗ for each dataset /
experiment pair using the parameters from the best-performing
optimization algorithm and initialization after 12 hr. Conver-
gence was defined as the point when the gradient norm of the
log-likelihood (divided by T) was less than 10−2. The tolerance
was set to 10−2 because it was the lowest tolerance that all
algorithms regularly converged to within 12 hr. Even though
each algorithm was run for a full 12 hr, we denoted the epoch and
time when each algorithm either converged or finished running
as the moment of “termination”.

5.3. Simulation Results

The results from the simulation study are shown in Figures 2–
4. We were primarily focused on the big-data setting and thus
only present results from experiments with T = 105 in the main
text. All figures associated with experiments for T = 103 can be
found in Supplement A.

Algorithm 5 with A = SVRG markedly sped up the opti-
mization procedure, as it usually converged in at most half as
many epochs compared to the baselines for each experiment.
Algorithm 5 with A = SAGA also tended to converge in
fewer epochs than the baselines for experiments with N = 6,
particularly when P = True and M = 10T. One epoch
of each baseline method took less computation time than one
epoch of Algorithm 5, but Algorithm 5 with A = SVRG
consistently converged before the baseline methods in terms of
raw computation time as well as epoch (Figure 3 and Supplement
A). All methods were prone to converge to local minima of
the negative log-likelihood, especially when N = 6, in which
case the likelihood surface was highly multi-modal. However,
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Figure 2. Maximum log-likelihood (across all algorithms and initial values after 12 hr), �(φ∗), minus the log-likelihood at the given epoch, �(φ), divided by T for a selected
run of each optimization algorithm in the simulation study. Each algorithm was run for 12 hr on a dataset generated with T = 105, N ∈ {3, 6}, or d ∈ {3, 6}. For each
experiment and optimization algorithm, we display the one random initialization (of five) that resulted in the highest likelihood after 12 hr. FE corresponds to P = False,
and PE corresponds to P = True. The y-axis is on a log-scale. Dots correspond to the epoch and likelihood at termination.

the bottom row of Figure 3 shows that in all T = 105 experi-
ments, negative log-likelihood values at termination were lower
for all versions of Algorithm 5 compared to baseline meth-
ods. In particular, each optimization algorithm / experiment
pair has a corresponding boxplot which summarizes the (re-
scaled) negative log-likelihood values at termination from all
datasets and initializations. For all experiments, all medians
and minimums corresponding to versions of Algorithm 5 were
lower than the median and minimum values corresponding
to BFGS. The results for experiments with T = 103 were
more varied (see Figure 1 of Supplement A), which indicates
that our inference method is more efficient when applied to
datasets with large T. We present figures analogous to Figure 2
for all five datasets corresponding to all experiments in Supple-
ment A.

6. Case Study

We tested the performance of our optimization algorithm by
modeling the movement of eight northern resident killer whales
off the coast of British Columbia, Canada. Biologgers are an
essential tool used to understand the behavior of marine mam-
mals. For example, time-depth recorders allow researchers to
estimate behavioral states associated with each dive (e.g., for-
aging, resting, and traveling, Tennessen et al. 2023; McRae
et al. 2024). Researchers also use biologging datasets to identify
and characterize dive phases, which are important for inferring
behavior (e.g., prey capture often occurs in the bottom phase
of a foraging dive, Wright et al. 2017; Jensen et al. 2023). As
such, we developed a model to identify three common dive
phases (ascent, descent, and bottom) and three dive types that
may indicate distinct behaviors of the animal, including resting,
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Figure 3. Boxplots showing time to terminate (top), epochs to terminate (middle), and maximum log-likelihood minus log-likelihood at termination (all over T , bottom)
for each optimization algorithm in the simulation study. The log-likelihood is denoted as �(φ), and the maximum log-likelihood across all algorithms and initial values after
12 hr is denoted as �(φ∗). Unlike Figure 2, results include all five datasets and all five parameter initializations per dataset. FE corresponds to {P = False, M = T}, PE1
corresponds to {P = True, M = T}, and PE2 corresponds to {P = False, M = 10T}. Results are shown for all simulation studies with T = 105. The y-axis of the bottom
row is on a log-scale.

foraging, and traveling. We performed inference on the resulting
model using our optimization algorithm in order to illustrate its
computational advantages.

6.1. Data Collection and Preprocessing

The data used in this case study were collected in August
and September of 2020 using a CATS time-depth recorder, or
TDR (Customizable Animal Tracking Solutions, www.cats.is).
Northern resident killer whales were equipped with suction-
cup attached CATs tags in Queen Charlotte Sound using an
adjustable 6–8m carbon fiber pole. The tags were programmed
to release within 3–24 hr of attachment. Instruments were
retrieved following each deployment using a Wildlife Com-
puters 363C SPOT tag (providing Argos satellite positions),
goniometer, ultra high frequency receiver, and yagi antenna.
The tags included 3D kinematic sensors (accelerometer, mag-
netometer, gyroscope), time-depth recorder, hydrophone and

camera. All sensors were programmed to sample at 50 hertz.
However, for the purposes of this study, we focus on the time-
depth recorder data to discern behaviorally distinct dives. We
calibrated the depth readings using a MATLAB package devel-
oped by Cade et al. (2021), and defined a dive as any sequence
of depth readings under 0.5 meters that lasted for at least 2 sec.
We then down-sampled the depth readings to a frequency of 0.5
hertz. The processed dataset contained a total of 5858 dives and
89,462 depth readings. Figure 5 shows the depth and change in
depth for a subset of dives for one whale in the dataset.

6.2. Model Formulation

Dive phases may vary depending upon the animal’s behavior.
For example, foraging dives tend to be deeper and longer than
resting dives, so it is natural to model the phases of foraging
dives differently compared to those of resting dives (Tennessen
et al. 2019b). As such, we used a hierarchical model to jointly
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Figure 4. Maximum log-likelihood minus log-likelihood at termination (all over T) versus epochs to terminate for each optimization algorithm in the simulation study with
T = 105, N ∈ {3, 6}, and d ∈ {3, 6}. The log-likelihood is denoted as �(φ), and the maximum log-likelihood across all algorithms and initial values after 12 hr is denoted as
�(φ∗). Unlike Figure 2, results include all five datasets and all five parameter initializations per dataset. FE corresponds to P = False, and PE corresponds to P = True.
The y-axis is on a log-scale.

model dive types and dive phases (Leos Barajas et al. 2017;
McRae et al. 2024). Hierarchical HMMs are specific instances
of traditional HMMs, so the machinery developed here is appli-
cable to perform inference. We assumed there to be three dive
types, which is consistent with other studies of cetaceans (e.g.,
resting, foraging and traveling, Leos Barajas et al. 2017). We also
assumed that there are three dive phases per dive type (descent,
bottom, and ascent), which is also consistent with other studies
of diving birds and mammals (e.g., Viviant, Monestiez, and
Guinet 2014). This resulted in a total of N = 9 hidden states,
each corresponding to a different dive phase / dive type com-
bination. Rather than modeling raw depth every two seconds as
the observation sequence, we encoded each two-second window
of depth data with summary statistics. Namely, we denoted an
observation as Yt = {Dt , Et}, where Dt ∈ R is the change in
depth in meters and Et = 1 if a dive ended at index t and Et = 0

otherwise. Within dive type i and dive phase j, we assumed Dt
followed a normal distribution with mean μ(i,j) and standard
deviation σ (i,j), and we assumed that Et followed a Bernoulli
distribution with probability p(i,j). We assumed that dives must
end on the ascent phase, so we set p(i,1) = p(i,2) = 0 for dive
types i = 1, 2, 3. Conditioned on the dive type and dive phase,
Dt and Et were assumed to be independent of one another.

Since each dive must begin with the descent phase,
we set the initial distribution δ to have the form δ =(
δ(1) 0 0 δ(2) 0 0 δ(3) 0 0

)
, where δ(i) represents

the probability that a killer whale begins its dive profile with a
dive of type i. We defined the transition probability matrix at
time t to depend upon the previous observation Et−1 because the
transition matrix will naturally depend upon when a dive begins
and ends. For example, the killer whale cannot change dive type
mid-dive, it must begin each dive in the descent phase, and it
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Figure 5. Depth profile and change in depth versus time of day for a selected killer whale (I107, male, born 2004) off the coast of British Columbia, Canada. The data in
panels one and three are color-coded according to the most likely hidden coarse-scale state (i.e., dive type) for each dive. The data in panels two and four are color-coded
according to the most likely hidden fine-scale state (i.e., dive phase) for each two-second window.

must end each dive in the ascent phase. The structure of this
transition probability matrix means that our model is technically
a generalization of a standard HMM (namely an HMMSDO, Li
2005). Nonetheless, Li (2005) and Tamposis et al. (2018) show
that the likelihood of this model is similar to a traditional HMM,
and that the standard Baum-Welch algorithm is still valid to
perform inference. To this end, we defined a coarse-scale, inter-
dive transition probability matrix �(c) ∈ R

3×3 as well as a fine-
scale, intra-dive probability transition matrix �(f ,i) ∈ R

3×3 for
each dive type i. �(f ,i) was upper-triangular for i ∈ {1, 2, 3}
because the descent and bottom phases of a dive cannot occur
after ascent, and the descent phase of a dive cannot occur after
the bottom phase. Formally, the transition matrix was a function
of Et−1 and defined as

�t =
⎛
⎝�(f ,1) 0 0

0 �(f ,2) 0
0 0 �(f ,3)

⎞
⎠ , Et−1 = 0, (37)

�t = �(c) ⊗
⎛
⎝1 0 0

1 0 0
1 0 0

⎞
⎠ , Et−1 = 1, (38)

where ⊗ denotes the Kronecker product. See Supplement B for
an expanded version of �t .

6.3. Optimization Procedure

We used a procedure similar to the simulation study to initialize
the case study parameters. Let D̄ denote the sample mean and

s denote sample standard deviation of {Dt}T
t=1. We initialized

the initial estimates for the mean
(
μ

(i,j)
0

)
and the log of the

standard deviation
(

log
(
σ

(i,j)
0

))
of the state-dependent density

of Dt as μ
(i,j)
0 ∼ N (D̄, s2) and log

(
σ

(i,j)
0

)
∼ N (log(s), 1) for

i, j = 1, 2, 3, where i refers to the dive type and j to the dive phase.
Further, let Ē represent the mean of {Et}T

t=1. We initialized the
state-dependent probability of observing a dive end as p(i,1)

0 = 0,
p(i,2)

0 = 0 and logit(p(i,3)
0 ) ∼ N (logit(Ē), 1) for i = 1, 2, 3,

where p(i,j)
0 is the initial estimate corresponding to the Bernoulli

distribution of Et during dive type i and dive phase j. Dive phase
3 is ascent.

Let νk ∈ R
3 denote the parameters associated with δ at

iteration k of a given optimization algorithm. We initialized
the first element of ν0 as zero for identifiability and the sec-
ond and third elements with a standard normal distribution,
N (0, 1).

Let η
(c)
k ∈ R

3×3 denote the parameters associated with the
coarse-scale probability transition matrix at iteration k of a given
optimization algorithm. The reparameterization from η

(c)
k to

�
(c)
k is given in (2). We initialized the diagonal elements of η(c)

0 as
zeros, and we initialized the off-diagonal elements of η

(c)
0 with a

normal distribution with mean −3 and unit variance, N (−3, 1).
Let η

(f ,i)
k ∈ R

3×3 denote the parameters associated with fine-
scale transition probability matrix �

(f ,i)
k . The reparameterization

from η
(f ,i)
k to �

(f ,i)
k is given in (2). We initialized all diagonal
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Figure 6. Maximum log-likelihood minus log-likelihood (all over T) versus epoch and computation time for the model from the killer whale case study. All optimization
algorithms were run for a total of 12 hr. For each optimization algorithm, we display the one random initialization (of 50) that resulted in the highest likelihood after 12 hr.
FE corresponds to P = False, and PE corresponds to P = True. The log-likelihood of φ is denoted as �(φ) on the y-axis, which is on a log-scale. Dots correspond to the
epoch and likelihood at termination for each algorithm.

elements of η
(f ,i)
0 as zeros and all off-diagonal elements of η

(f ,i)
0

with a normal distribution with mean −1 and unit variance,
N (−1, 1).

Similarly to the simulation study, we estimated
the parameters of the model using our six inference
algorithms (A ∈ {SVRG, SAGA} in addition to (P, M) ∈
{(False, T), (True, T), (True, 10T)}) and direct likelihood
maximization via three baseline algorithms (BFGS, conjugate
gradient, and gradient descent). All algorithms were run using
50 random initializations for a total of 12 hr each on Compute
Canada Cedar nodes with 16GB of RAM.

We employed similar measures as those in the simulation
study to fairly compare the optimization algorithms. In partic-
ular, we measured computational complexity in epochs in addi-
tion to raw computation time and defined an epoch using the
definition from the simulation study. We also estimated the max-
imum likelihood parameters φ∗ for each dataset/experiment
pair using the same method as the simulation study. Finally,
we recorded the epoch and likelihood at termination for each
optimization algorithm using the same definition of termination
as the simulation study.

6.4. Case Study Results

Our model predicted dive phases and dive types that are in line
with previous studies of marine mammal diving behavior. For
example, dive types are separated by shallow, medium, and deep
depths, which is similar to results from Leos Barajas et al. (2017).
Further, each dive has a well-characterized bottom phase that
occurs at approximately 70% of the maximum depth for all dive
types. This finding is similar to the results from Tennessen et al.
(2019a). See Figure 5 and Supplement B for further detail.

Most importantly, this case study demonstrates that all of our
stochastic algorithms converged in fewer epochs and to regions

of higher likelihood compared to the full-batch baselines; see
Figures 6 and 7.

All algorithms occasionally converged to sub-optimal local
minima, but Algorithm 5 with A = SVRG, P = True, and
M = T tended to converge with the highest likelihood relatively
quickly in terms of both epoch number and raw computation
time (see Figure 7). As with the simulation study, Algorithm 5
with A = SVRG tended to converge in fewer epochs compared
with A = SAGA (see Figure 6). Setting P = True appears to
be of particular use early in the optimization procedure (i.e., the
first ≈ 5 epochs, see Figure 6). This behavior is intuitive because
the proper weights

(
γ (φ

(m)

k ) and ξ(φ
(m)

k )
)

change rapidly early
in the optimization procedure.

7. Discussion

The advent of high-frequency sensing technology has allowed
researchers to model exceptionally long, high-frequency
stochastic processes with increasingly complex HMMs
(Patterson et al. 2017). However, these complex models can
be computationally expensive to fit (Glennie et al. 2023). We
introduce an inference algorithm that speeds up maximum
likelihood estimation for HMMs compared to existing batch-
gradient methods. We do so without approximating the
likelihood, which is required for many existing stochastic
inference methods (Gotoh, Hochberg, and Silverman 1998; Ye,
Ma, and Qian 2017).

Our method does not require a closed-form solution for the
M step, which enables quick inference for a diverse range of
HMM models. Such a method is useful in practice because
many HMMs lack closed-form solutions for the M step. In
finance, Langrock et al. (2018) modeled the relationship between
the price of energy and price of the oil in Spain using
nonparametric HMMs. In ecology, Lawler et al. (2019) used
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Figure 7. Maximum log-likelihood minus log-likelihood at termination (all over T) versus epochs to terminate for the killer whale case study. Unlike Figure 6, results include
all 50 parameter initializations. FE corresponds to P = False, and PE corresponds to P = True. The log-likelihood of φ is denoted as �(φ) on the y-axis, which is on a
log-scale.

autoregression in the state-dependent distributions of an HMM
to model the movement of grey seals (Halichoerus grypus).
Likewise, Pirotta et al. (2018) used covariates in the transi-
tion probability matrix of an HMM to determine the effect
of fishing boats on the behavior of Northern Fulmars (Ful-
marus glacialis). Our method will be especially relevant as
advances in biologging and tracking technology allow practi-
tioners to collect increasingly large and high-frequency datasets
(Patterson et al. 2017).

Our new algorithm was particularly effective when perform-
ing inference over large datasets. For example, when applied
to simulations with T = 105 observations, our algorithm
converged in approximately half as many epochs and tended to
converge to regions of higher likelihood compared to existing
baselines. Our case study of killer whale kinematic data showed
similar improvements, demonstrating how our optimization
procedure makes complex hierarchical HMMs less computa-
tionally expensive to fit on large biologging datasets.

The partial E step variant of our algorithm (i.e., with P =
True) outperforms baselines particularly well early in the
optimization procedure (in the first ≈ 5 epochs). As such,
using a partial E step may be particularly advantageous when
researchers are modeling large datasets with relatively low con-
vergence thresholds.

One method that is particularly aligned with our algorithm
is that of Zhu et al. (2017), who implement variance-reduced
stochastic optimization to perform the M step of the EM
algorithm on high-dimensional latent-variable models. Their
method obtains a sub-linear computational complexity in the
length of the observation sequence as well as a linear conver-
gence rate. However, they focus primarily on mixture models
rather than HMMs, and they do not combine the variance-
reduced stochastic M step with a partial E step, which is an
extension that we implement here. Further, their theoretical
results assume independence between observations, which we
do not rely on here.

Future work can explore the performance of our new algo-
rithm when applied to increasingly complex HMMs. Parameter
inference for these complicated models may add difficulties
beyond those presented in our simulation and case studies. For
example, HMMs with covariates in the transition matrix are
less stable than time-homogeneous HMMs, and optimization
algorithms can easily get stuck in local optima of the likelihood
surface. Our optimization algorithm was less prone to getting
stuck in local optima than the baseline methods in this work, so
the same may be true for more complicated HMMs.

While we use SVRG and SAGA in our analysis, there are
other variance-reduced stochastic optimization algorithms that
could be applied within our framework. For example, SARAH
recursively updates the control variate in the inner loop of
the optimization algorithm (Nguyen et al. 2017), SPIDER uses
a path-integrated differential estimator of the gradient (Fang
et al. 2018), and LiSSA is a second-order variance-reduced
stochastic optimization scheme (Agarwal, Bullins, and Hazan
2017). Future work can integrate these algorithms within our
framework and evaluate the resulting performance. While we
focus on an ecological case study here, the inference procedures
we developed can unlock more complicated HMMs with larger
latent spaces and bigger datasets for practitioners across a variety
of disciplines.

Supplemental Materials

Appendix: Contains alternate version of Algorithm 5 and proofs for all
theorems. (appendix.pdf, pdf file)

Supplement A: Additional results from the simulation study, including
plots of likelihood versus computation time, plots for all five simulated
datasets, and results for experiments with T = 103. (supp_A.pdf, pdf
file)

Supplement B: Additional results from the case study, including param-
eter estimates of the final model and dive profiles for all eight killer
whales. (supp_B.pdf, pdf file)
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Code: Code and data to run experiments and plot results from the
manuscript can be found at https://github.com/evsi8432/sublinear-
HMM-inference.
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